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Robust Time-Delay Control of a Reclaimer
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(Received March 6, 1999)

In this paper, a robust time delay control for a reclaimer is investigated. Supplying the same

amount of raw material throughout the reclaimation process, from the raw yard to a sinter plant,

is important to keep the quality of the molten steel uniform. As the parameter values of the

reclaimer are not available, the boom rotational dynamics. is modeled as a second order

differential equation with unknown coefficients. The unknown parameters in the nominal model

are estimated using recursive estimation method. Another important factor in the control

problem of a reclaimer is the large time delay in output measurement. Assuming a multiplicative

uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and

the structured uncertainty in the parameter estimation, a robust Smith predictor is designed. A

robust stability criterion for the multiplicative uncertainty is derived. Following the work of

Goodwin et al . (1992), a quantifying procedure of the multiplicative uncertainty bound.

through experiments, is described. Experimental and simulation results are provided.

Key Words: Reclaimer, Modeling, Identification, Smith Predictor, Robustness, Model Uncer­

tainty
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1. Introduction

The reclaimer is a piece of industrial equipment

that excavates and transports raw materials, like

coal and iron ore, in the raw vard of a steel plant.

The reclaimer consists of a main body that trans­

lates on a rectilinear rail, a boom rotating verti­

cally and horizontally on the main body, and a

tilted rotating disk at the end of the boom. The

boom is approximately 50 m in length, and the

rotating disk is about 6 m in diameter. Scooping

buckets are attached to the circumference of the

circular disk. The disk tilts at various angles

allowing the raw material in the buckets to fall on

the conveyor belt. Which is located in the middle
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section of the boom as the disk rotates (Hong et

al ., 1997; Choi et al., 1999).

Currently, all stockyard reclaimers are manu­

ally operated. When the operator knows the kind,

quantity, and location of the raw material to be

excavated, he manually drives the reclaimer to the

given spot and scoops up the raw material.

However, skilled operators are rare and in times

of poor visibility or darkness, it is difficult for the

operator to land the buckets on the desired spot

of the ore pile. Also most stockyards are full of

dust with unsuitable working conditions.

In this paper, as a part of reclaimer automation,

a mathematical model of the reclaiming process

and a robust Smith predictor design are inves­

tigated. A mathematical model of the reclaiming

process including boom rotational dynamics is

proposed. The control objective in this paper is to

provide the sinter plant with a constant quantity

of raw material throughout the reclaimation proc­

ess. As the parameter values of the reclaimer are

not available, the boom rotational dynamics is

modeled as a second order differential equation

with unknown coefficients. The unknown coeffi-
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cients are estimated by a recursive estimation

method. The dynamics neglected in the modeling,

such as the spool valve dynamics and the hydrau­

lic pressure dynamics, are estimated from experi­

ments. By analyzing the shape of a raw material

pile and the boom's circular motion, an output

equation is derived as a function of the angular

displacement and velocity of the boom. By com­

bining the second order boom rotational equation

with the estimated parameters and the output

equation, a nominal plant model is defined.

Another important factor for reclaimer control

is the large output measurement delay caused by

the non-collocation of the end-effector (an ex­

cavating bucket) and the output sensor (a load

cell). The load cell is located under the conveyor

belt and is approximately 5 m from the rotational

axis of the disk. The structure of a Smith predic­

tor as a feedback controller is investigated. To

design a robust Smith predictor which incorpo­

rates both the dynamics neglected in the model

and the uncertainties in the parameter estimation,

a multiple uncertainty is added to the nominal

plant model. A robust stability criterion of the

Smith predictor, with multiplicative uncertainty,

is derived. By following the work of Goodwin et

al. (1992), a systematic procedure of quantifying

the uncertainty bound is illustrated. This proce­

dure is then applied to the reclaimer. Finally, the

closed loop performance of the robust Smith

predictor is simulated.

Contributions of this paper are as follows.

First, to the best of authors' knowledge this paper

is the first investigation of reclaimer control to

appear in the literature. Second, by estimating the

uncertainty bound of the neglected dynamics, the

robustness of the Smith predictor has been enhan­

ced.

This paper has the following structure. In Sec.

2, the boom rotational dynamics is modeled and

its parameters are identified. By analyzing the

reclaiming process, an output equation is derived

and a nominal plant model is defined. In Sec. 3,

a robust Smith predictor is investigated and a

robust stability criterion, with multiplicative un­

certainty, is derived. In Sec. 4, a systematic proce­

dure of estimating the uncertainty bound from

experiment is described. Experiments and simula­

tions are provided in Sec. 5. Conclusions are

given in Sec. 6.

2. Modeling

In this section a mathematical model of the

reclaimer which will be used for the control

system design is investigated. It must be noted

that the values of the system parameters such as

the mass of the boom, the servo valve flow gain,

etc., are not available. By combining the param­

eters of the boom rotational mechanism and the

parameters of the hydraulic drive system, the

dynamic equation of the boom rotational motion

is formulated as a second order differential equa­

tion with unknown coefficients. These unknown

coefficients are determined using a recursive esti­

mation method which employs experimental

input and output data. A mathematical expression

for the reclaiming rate, as a function of the

angular displacement and the angular velocity of

the boom, is also proposed. An output equation

will be derived by analyzing the trajectories of

the buckets and the geometry of the material pile.

Finally, by combining the second order boom

rotational equation with the estimated parameters

and the output equation (after linearization), a

nominal plant model for the control system

design is proposed.

2.1 Boom rotational dynamics

Figure I shows a reclaimer and its schematic

diagram depicting the boom rotational motion.

The reclaimer is composed of a hydraulic power

supply, a servo valve, a hydraulic motor, a ring

gear and a boom structure. The input to the boom

rotational system is a current, i, to the hydraulic

servo valve and the output is the horizontal

rotational speed, (i)2, of the boom. If the motor

cross-port leakage and the pressure drop in the

pipes are neglected, the following continuity

equations hold (Watton, 1989).
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2.2 Output equation

In this subsection, an output equation that

expresses the reclaiming rate is derived. The

amount of raw material transported to the sinter

where {i(k), wz(k)}, k=l, 2, "', N are the

input-output experimental data, and the regres­

sion vector is defined as cpT (k - I) = [ - wz (k - I)

-wz(k-2) i(k-I)J. For more detailed and

advanced adaptive identification/control schemes

several literatures are available (Astrom and

Wittenmark, 1995; Ljung, 1987; Hong and Bents­

man, 1994; Hong, 1995, 1997; Van der Hof et aI,

1995) .

6 _

Let e= [a; ao b~J T. Then the estimate, 8N, of e
with N experimental data can be obtained by an

appropriate parameter estimation algorithm such

as a recursive least squares estimation method

that satisfies

where k, is the servo-valve flow gain in the steady

state, r=fb/D~ is the inductance, R; is the servo

-valve resistance in the steady state, and Rf=Bv/
D~ is the viscous resistance. It is noted that all the

values of k" r. u, s; «; and e, in Eq. (4) are

not known. This is because the particular re­

claimers for which the control system has been

designed are currently operating in the field .

From Eq. (4), a second order nominal model of

the boom rotating system, with unknown coeffi­

cients a., ao, and be, is defined as

The unknown coefficients In Eq. (5) are

identified through experiment. Let the discrete

transfer function of Eq. (5) be (Phillips and

Nagle, 1995)

~
. COz output

Fig. 1 A reclaimer and its schematic diagram depict­
ing the boom rotational motion.

where TL is the external load torque, B; is the

viscous friction coefficient. and f b is the boom

inertia. Assuming that the external load torque

TL is negligible, the transfer function from ito wz
of the linearized system at an operating point is

where k; and k, are the flow coefficients of the

servo valve, Ps is the supply pressure, Pi and pz
are the pressures of the input and output ports of

the hydraulic motor, respectively, D« is the dis­

placement per radian of the hydraulic motor, Re

is the motor resistance, and p is the flow

capacitance.

According to Newton's second law, the equa­

tion for the boom slew motion is
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(a) Trajectories of the boom tip (top view)

raw material pile

where the subscript 0 denotes the linearization at

the operating point.

q (82' (2) = P • h' • W2
• {(L+ d

jcos82) - jrcL--OC2---d--=l~si-n2~8-d (10)

where p is the density of the raw material. Let the

linearization of Eq. (10) at an operating point,

for exarnple t A, (2)O= (45°, OAO/sec), be

q (82, (2) = [oq (fh, (2) /082 oq(82, (2) /
OW2] a [82 W2] T ( II )

5 (82) ={ (L+ d1cos82) - j L2- dlsin 282}· h'

(9)

Finally, the reclaiming rate, as a function of 82

and Qh, is derived as

0(82) = (L +d1cos82) - j L 2_ dlsin 282' (8)

Figure 2 (b) shows a side view of the two rotating

disks before and after the advancement of the

main body by dj • As the disk tilts by r/J and </!' the
shape of the disk becomes an ellipse. Let h<h,»,
- hi be the height of the shaded portion in Fig. 2

(b). This shaded portion indicates the volume of

raw material that will be removed as the disk

rotates. In general, h' may not be the same as R
cos</!. Since the ellipse has been translated by 0,
the shaded area 5 is the same as the area of the

rectangle whose base is C2C3 and height is h' .

Therefore, 5, as a function of 82, becomes

Yo

h' = hi+1 -hi

......
.....

.....
........

............
.....

......... L
......

....
.....

....

o

RcoslfI

(b) Advancement of the disk (side view)

Fig. 2 Geometries for obtaining an output equation.

plant is quantified as a function of the angular

displacement and the angular velocity of the

boom. Since a stacker uses the same rectilinear

rail when it stacks raw materials in the raw yard,

the raw material heaps are parallel to the rail.

Figure 2 (a) shows the trajectories of the bucket

tip as viewed from the top in which the ZQ-axis

denotes the rectilinear rail. Arc AB shows the

slew arc of the tip before the main body advances

by db and arc A'B' denotes the arc made after the

advancement. Let 0 be the distance between the

two intersection points made by the two arcs AB
and A'B' and the boom. Then, 0 is a function of

82 given as

2.3 Output delay
A large output measurement delay occurs due

to the non-collocation of the end-effector (a

bucket) and the output sensor (a load cell). The

load cell is located 5 m from the rotational axis of

the disk and below the conveyor belt. The size of

delay varies depending on the type of the re­

claimer. It ranges from 5 sec to 10 sec.

2.4 A nominal plant model
Note that Eq. (5) and Eq. (II) denote the

system and the output equations of the plant,

respectively. Let P (s) be the transfer function

from ito q. Then, a nominal plant model, includ­

ing the output delay, is defined as follows



Robust Time-Delay Control of a Reclaimer 579

where Co(S)=[t~2++ ~~21 from Eq. (II),

is defined in Eq. (5), and To is a nominal value

of the time delay. In this paper, To is 7.8 sec.

3. Control Design

delay and the other is to have a good prediction

model.

In the case of a reclaimer, the time delay can be

measured once a specific reclaimer is chosen.

However, as noted in the modeling stage of the

plant equation in Sec. 2, the nominal plant model

represented as Eq. (12) has a large uncertainty.
In this section a feedback control of the re­

claimer, for the purpose of uniform reclaiming, is

investigated. To incorporate a large time delay in

the output measurement, the time delay compen­

sation scheme of a Smith predictor is investigated

(Palmor, 1996). In addition, a robust stability

criterion, in the presence of multiplicative uncer­

tainty, is derived.

3.2 A robust stability criterion

The transfer function of the plant with a multi­

plicative uncertainty is

(13)

where the subscript * denotes the "true" plant.
The transfer function of the Smith predictor is

The closed loop transfer function with !l (s) =0 is

Note also that with P (jw) = Po (jw) e- i ToW the
following inequality holds

A robust stability criterion for the multi­
plicative uncertainty given by (Doyle et al., 1992,

p. 51) is

( 14)

(16)

Ko(s)P(s)
1+ Kst.s) Po(s) .

( IS)

I+Ko(s) (Po(s)-P(s)) .

P(s)K(s)
I+P(s)K(s)

K(s)

II
Ll(jw) K o(jw) P (jw) II

1+ K; (jw) Po (jw) 00

:5:1\ Ll (jw) K o(jw) Po (jw) II
1+ x, (jw) Po (jw) 00'

Therefore, criterion given in Eq. (16) for the

Smith predictor becomes

II
Ll(jw) K o(jw) Po (jw) II < I (17)

1+ K; (jw) Po (jw) 00 •

Finally, by utilizing Eq. (17), the following

criterion for the primary controller Ko(s) is

derived as follows

3.1 Smith predictor

Figure 3 shows a block diagram of the Smith

predictor and a plant with a multiplicative uncer­

tainty. P (s) denotes the transfer function of the

nominal plant model defined in Eq. (12), and L1
(s) is the multiplicative uncertainty of the plant.
This multiplicative uncertainty includes both the

structured uncertainty contained in the parameter

identification problem of Eq. (5) and the un­

structured uncertainty neglected in deriving Eq.

(4) and Eq. (10) such as the servo-valve spool

dynamics, the pressure dynamics in the hydraulic

pipes, and the uncertainties in the raw material

piles. K(s) denotes the Smith predictor which

consists of a primary controller Ko(s) and an

inner feedback loop Po(s)-P(s), where Po(s)

denotes the plant model excluding the time delay,

i. e. Po(s)=Co(s)Go(s). The inner feedback
loop is called a predictor since the signal q
performs a prediction of the output by the delay

units of time into the future. To enhance the

control performance of the Smith predictor, two

things are required. One is to know the exact time

Fig. 3 Smith predictor configuration of the plant
with a multiplicative uncertainty.

I
Ko(jw) Po (jw) I I c \-! 0

1+ Ko(jw) Po(jw) < ILl (jw) I· ror v w> .

(18)

Therefore, once ILl(jw) I of the plant is deter­

mined, the robustness of the Smith predictor can

be assured by designing Ks (s) according to Eq.

(18). In the next section, the uncertainty bound of
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L1 (jw) for the reclaimer is derived.

For this function, p is a sufficiently large integer,

g (k) are coefficients, Ak (z) are appropriate basis

functions for a stable linear time? invariant sys­

tem, il (z) = [Ao(z) Al (z) ... Ap- 1 (z) J, and lJg=
[g(O) ... g(p~ I)] T. For example, the basis

functions of a FIR model are Ak (z) =Z-k, and

;r=-p
those of a Laguerre model are Adz) (z _ [)

k

[~-=-zf ] ' where ~ is a positive real number. If

Eq. (24) is expressed with a FIR model, g(k) is

the impulse response of Eq. (6). If the Laguerre

model is used, ~ is chosen to be the real part of

the dominant pole of Eq. (6). Equation (24) is

used instead of Eq. (6) because an expression of

the plant transfer function, that is suitable for

estimating the model uncertainty, is needed.

• Step 3
Let II (z) = [I Z-l ... z-<m-l)], where m is an

integer such that the impulse response of the true

transfer function C* (z) decays out sufficiently

beyond the m-th step. Use the input data u (k)

and the il (z) obtained in Step 2 to construct

fPT=[¢>t ... rPN]' where #=il(z)u(k),
(25)

Q= (fPTfP)-lfPT,

lJfT=[tfo ... tfNJ, where tfI=II(z)u(k).

• Step 4
Solve the maximization problem as given by

lows .

• Step I

Use a parameter estimation method, which

satisfies Eq. (7), to estimate the coefficients of the

discrete nominal transfer function, Co (z) of Eq.

(6), with N point input and output data

sequences, U=[u(l) ... u(N)F and Y=[y(l)

... y (N) F. In the case of a reclaimer, u is the

input current i, and y is the boom rotational

speed W2'

• Step 2
Use the parameter values estimated In Step I

and convert the nominal plant model into the

following form of a rational transfer function

with a fixed denominator.

(20)

(23)

(22)

Since the time delay can be measured, assuming

that To - T*;:O, Eq. (20) becomes

4. Uncertainty Quantification

Using Eq. (12) and Eq. (19), the numerator of

Eq. (20) becomes

Ip(jw) - P* (jw) 1= I Co (jw) I

1Co (jw) e-j(To- T.)w_ C* (jw) I. (21)

Since Co (jw) is known, the question is how to

estimate the denominator, ICo (jw) - C* (jw) I, of

Eq. (23). By denoting C*(jw)=Co(jw)+CD.

(jw), where CD. (jw) is an additive uncertainty of

Co (jw), the uncertainty quantification problem

amounts to finding the magnitude bound of the

additive uncertainty of the boom rotating

dynamics. In this paper, the work of Goodwin et

al. (1992) is used in estimating ICD.(jw)j. The

quantification procedure is summarized as fol-

where C* (s) denotes the true transfer function, in

comparison with (5), from the input current to

the angular velocity of the boom, and T* is the

true time delay. Note that Eq. (19) consists of the

nominal Co(s) from Eq. (12) instead of C*(s).

From Eq. (13), the following relationship

holds for w>O

In this section, l/IL1(jw) I of Eq. (18), by
estimating the multiplicative model uncertainty L1

(jw), is quantified. Let the true transfer function

of the plant be of the form

P*(s) =P(s) (1+L1(s») =Co(s) C*(s)e- T• s

(19)

In this paper, Eq. (22) is estimated by experi­

ments. The discrete time description of II L1 (jw)

in Eq. (18), assuming that the sampling time is

sufficiently small, is as follows (Astrom and

Wittenrnark, 1995, p. 123)

I
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Goodwin et al . (1992). This maximization prob­

lem, for M, S' and o., is defined by a log
maximum likelihood function as

argmax I (W; M, S' 6v) =argmax( -+In det
M,C:,cru M,c;,crv -]; -+WT];-I W -t-constant j (26)

where

W=H T ( Y - (j)8g ) ,

H is a matrix which is composed of N-p In­

dependent columns of 1- (j)Q,
]; = HTWCq WTH+ 6~HTH,

C; = diag [MskJ.
O~k~m-l

• Step 5
For a specifically chosen frequency, to. calcu-

late A (e- j W
) and IJ (e- j W

) . Then, the expectation

of the denominator of Eq. (23) is calculated as

follows

E [IGo (e- j W
) - G* (e- i W

) 12J= (Il- AQW)
c. (IJ-AQW) *+AQCvQTA* (27)

the time domain response of Eq. (28) with the

same input sequence used in estimating Eq. (28).

The validity of Eq. (28) has been improved by a

number of experiments using various excitational

signals. It is shown that the simulated results of

Eq. (28) agree well with the experimental data.

• Step 2 and Step 3

In transforming the estimated transfer function

of Eq. (6) into the form of Eq. (24). a fifth order

Laguerre model (p=5) with ~=0.13 is used, i.e.

Go(z) = ±g(k) )1-0.\ Y [ 1-0.13z Jk
k=O (z-0.13) z-0.13

(29)

where g(O) =0.0184, g(l) =0.1454, g(2) =

-0.0120, gO) = -0.0287, and g(4) =0.0080. In

calculating IJ(z) in Step 3, m=30 is used.
• Step 4:

In order to solve the maximization problem of

Eq. (26), a genetic algorithm is used. The

obtained values of M, S, and 6vare

M=0.412, t=0.793, and 6 v = 0. [2. (30)

Figure 4 compares the experimental data and

5. Experiments and Simulations

where Cv=6vINxN' and the superscript *
denotes the complex conjugate transpose.

• Step 6
By repeating Step 5 at each oi; the evaluation of

Eq. (23) can be completed.

10 15 20 25 30

samplingnumber

An estimated additive uncertainty bound of
Go(Jlc) (experimental results) and the
impulse response of (32).

-0.2
0

Fig. 5

-0 1 • - - - - -. - ~ - - - - - - - ~ - - - - - - - - ~ - - - - - - - - r--------~ -------.

Fig. 4 Comparison between the experimental out­
put and the response of (28)

02r---,-~--~-~--~-~------,

0.15 - - -- - -- ~ - - - ~ - - --:. ~- _. - -~ - ~ - -- -_ •• - ~ -_. - - -. - ~ -- - •• --

0:: ::.: :::::,::::"'/::::1::::::::::- .::::::::'::::

The two exponentially decaying curves in Fig.

5 illustrate the additive uncertainty bound, given

in Eq. (30), of the boom rotational dynamics.

_015 ------. r- -- --- -or ------.-;- ------~---- --.-.---.----

(28)I-O.2592z 1+0.2166z 2-
ci»

Experiments were carried out in the stockyard

of Kwangyang Works of Pohang Steel and Iron

Company, ltd. , in Korea.

• Step I of Section 5:
In identifying the unknown parameters in Eq.

(6),9000 point input-output data were sampled

at a 15 Hz sampling frequency, i. e. N=9000. To

fulfill the persistency of excitation condition of

the input signal, three sinusoidal frequencies were

added to the low speed slew motion of the boom.

The three sinusoidal signals ranged from 0.2°/sec
to 0.6°/sec or 1O-3.25_1O-2.78Hz. The identified

transfer function of Eq. (6) is

0.1429[1
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20 40
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----,----------
,

0.4 --- ------~----------
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Fig. 6 Design criteria (18) obtained for a specific
reclaimer (experimental results).

time(sec)

Fig. 7 Comparision of a simple PID. an ideal SP,
and a robust SP (simulation results).

• Step 5 and Step 6:

The upper curve in Fig. 6 illustrates IIILl(jw)
I of (23) obtained through Step 5 and Step 6. The

lower curve shows the magnitude plot of the right

hand side of the robust Smith predictor criterion

given in Eq. (18), where the primary controller

Ko(s) is of the form

Ko(S)=IO.3+0. 17-l-+20.2s (31)
s

and the gains in Eq. (3 I) are determined by the

loop shaping method in such a way that Eq. (18)

is satisfied.

• Simulations:

To demonstrate the robust performance of the

primary controller ddescribedd by Eq. (31) with

a time delay T o=7.8sec, the following additive

uncertainty of the plant has been inserted.

-0.0334z-3_0.1726z-2+0.2284[1_0.0224
[4-0.6567 z 3+0.4550z-2- O.1212z 1+0.0293'

(32)

The time response between the two exponential­

ly decaying curves in Fig. 5 depicts the impulse

response of Eq. (32). Figure 7 compares the three

step responses of a simple PID controller (best

tuned), an ideal Smith predictor without any

uncertainty in the model, and a robust Smith

predictor that includes uncertainty described by

Eq. (31). Compared with the simple PID, con-

troller the robust Smith predictor performs well

in both the rise and settling times.

6. Conclusions

In this paper, a nominal plant model and a

robust Smith predictor control of a reclaimer

were investigated. As the parameter values of the

reclaimer were not available, the reclaiming proc­

ess was modeled as a second order differential

equation with unknown coefficients. The un­

known coefficients were estimated by a recursive

estimation method. Then a nominal plant model

was defined using these estimated parameter val­

ues. In order to incorporate the large time delay

in the output measurement, a Smith predictor was

adopted as a feedback controller. A robust stabil­

ity criterion of the Smith predictor was derived.

To enhance the robustness of the closed loop

system, the uncertainties that were neglected in

the modeling and identification stage were esti­

mated. Following the work of Goodwin et al.
(1992), a design procedure that accounts for the

uncertainties was illustrated.
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